Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.

نویسندگان

  • Boris D Chernomordik
  • Harry B Russell
  • Uros Cvelbar
  • Jacek B Jasinski
  • Vivekanand Kumar
  • Todd Deutsch
  • Mahendra K Sunkara
چکیده

Undoped hematite nanowire arrays grown using plasma oxidation of iron foils show significant photoactivity (~0.38 mA cm(-2) at 1.5 V versus reversible hydrogen electrode in 1 M KOH). In contrast, thermally oxidized nanowire arrays grown on iron exhibit no photoactivity due to the formation of a thick (>7 μm Fe(1-x)O) interfacial layer. An atmospheric plasma oxidation process required only a few minutes to synthesize hematite nanowire arrays with a 1–5 μm interfacial layer of magnetite between the nanowire arrays and the iron substrate. An amorphous oxide surface layer on hematite nanowires, if present, is shown to decrease the resulting photoactivity of as-synthesized, plasma grown nanowire arrays. The photocurrent onset potential is improved after removing the amorphous surface on the nanowires using an acid etch. A two-step method involving high temperature nucleation followed by growth at low temperature is shown to produce a highly dense and uniform coverage of nanowire arrays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.

Many narrow band-gap semiconductors cannot fulfil the energetic requirements for water splitting, thus the assistance of large external voltages to complete the water decomposition reaction is required. Through thermal decomposition of Fe(NO3)3 on n-Si nanowires prepared by the chemical etching method, we fabricated a high-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode that exhib...

متن کامل

Electrochemical synthesis of p-type Zn-doped α-Fe2O3 nanotube arrays for photoelectrochemical water splitting.

A facile electrochemical method is developed to synthesize p-type Zn-doped α-Fe2O3 nanotube arrays that demonstrate excellent photoelectrochemical properties for water splitting.

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.

Ta-doped hematite (α-Fe2O3) nanorod array films were successfully prepared on fluorine-doped tin dioxide (FTO) coated glass substrates via a facile solution growth process with TaCl5 as a Ta doping precursor. Under 1 sun illumination and at an applied potential of 1.0 V vs. Ag/AgCl, the Ta-doped α-Fe2O3 photoanode with optimized dopant concentration showed a photocurrent density as high as 0.53...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2012